Nucleus-electron model for states changing from a liquid metal to a plasma and the Saha equation.

نویسندگان

  • J Chihara
  • Y Ueshima
  • S Kiyokawa
چکیده

We extend the quantal hypernetted-chain (QHNC) method, which has been proved to yield accurate results for liquid metals, to treat a partially ionized plasma. In a plasma, the electrons change from a quantum to a classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact able to provide the electron-electron correlation at an arbitrary temperature. As an illustrating example of this approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV at a fixed normal ion density 1.03x10(22)/cm(3). The electron-ion radial distribution function (RDF) in liquid Rb has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that, with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion and ion-ion RDF's, and the charge population that are consistent with the atomic structure of each ion for a partially ionized plasma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DERIVING THE EQUATION OF STATE FOR LIQUIDS AND EXTENSION OF THE PRINCIPLE OF CORRESPONDING STATES

A new simple model is introduced for a liquid and an equation of state is derived based on this model and the statistical mechanical calculations. This equation of state works well for the non-polar and slightly polar liquids. The important conclusion that may be deduced from this equation of state is that if the reduced variables of state are chosen and defined appropriately, then, the pri...

متن کامل

Finding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model

In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which  is integer and constant and k is wave vector). The longitudinal ...

متن کامل

Assessment of a cluster of gold nanoparticles effect on cell absorbed dose using the Geant4 toolkit

Introduction: Radiotherapy plays a vital role in cancer treatment. To establish a new potency in radiosensitize tumor cells, delivery of High-Z materials is offered. To date, several simulation geometries have been applied to define simulation sets. The clustering of nanoparticles (NPs) within the cells is a prominent parameter usually ignored in simulation studies. <stro...

متن کامل

Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons

We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...

متن کامل

Effects of laser induced metal vapour on arc plasma during laser arc double sided welding of 5A06 aluminium alloy

In order to study the effects of laser induced metal vapour on arc plasma during laser arc double sided welding (LADSW), emission spectroscopy techniques were utilised. The arc plasma in LADSW of 5A06 aluminium alloy was compared with conventional gas tungsten arc welding (GTAW) in this work. The electron temperature and density were estimated by the Saha– Boltzmann equation and the Stark broad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 60 3  شماره 

صفحات  -

تاریخ انتشار 1999